• /  5
  • 下载费用: 11.9积分  

高中数学 考前归纳总结 圆锥曲线中的定值、定点问题

'高中数学 考前归纳总结 圆锥曲线中的定值、定点问题'
圆锥曲线中的定值、定点问题 一、常见基本题型: 在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过 取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三 角式,证明该式是恒定的。 (1)直线恒过定点问题 例1. 已知动点在直线上,过点分别作曲线的切线, 切点为、, 求证:直线恒过一定点,并求出该定点的坐标; 解:设,整理得:同理可得: ,又 ,.例2、已知点是椭圆上任意一点,直线的方程为, 直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒 过一定点G,求点G的坐标。解:直线的方程为,即 设关于直线的对称点的坐标为 则,解得 直线的斜率为 从而直线的方程为: 即 从而直线恒过定点 (2)恒为定值问题例3、已知椭圆两焦点、在轴上,短轴长为,离心率为,是椭圆在第一 象限弧上一点,且,过P作关于直线F1P对称的两条直线PA、PB分别交椭 圆于A、B两点。 (1)求P点坐标; (2)求证直线AB的斜率为定值;解:(1)设椭圆方程为,由题意可得 ,所以椭圆的方程为 则,设 则 点在曲线上,则 从而,得,则点的坐标为。 (2)由(1)知轴,直线PA、PB斜率互为相反数, 设PB斜率为,则PB的直线方程为: 由 得 设则 同理可得,则 所以直线AB的斜率为定值。 例4、已知动直线与椭圆相交于、两点,已知点 , 求证:为定值. 解: 将代入中得 , ,所以 。二、针对性练习 1. 在平面直角坐标系中,已知椭圆.如图所示,斜率为且不 过原点的直线交椭圆于,两点,线段的中点为, 射线交椭圆于点,交直线于点. (Ⅰ)求的最小值; (Ⅱ)若?,求证:直线过定点; 解:(Ⅰ)由题意:设直线, 由消y得:, 设A、B,AB的中点E,则由韦达定理得: =,即,, 所以中点E的坐标为, 因为O、E、D三点在同一直线上, 所以,即, 解得, 所以=,当且仅当时取等号, 即的最小值为2. (Ⅱ)证明:由题意知:n>0,因为直线OD的方程为, 所以由得交点G的纵坐标为, 又因为,,且?,所以, 又由(Ⅰ)知: ,所以解得,所以直线的方程为, 即有, 令得,y=0,与实数k无关, 所以直线过定点(-1,0). 2. 已知点为曲线上的一点, 若,是否存在垂直轴的直线 被以为直径的圆截得的弦长恒为定值?若存在,求出直线的方程;若不存在, 请说明理由. 解:设的中点为,垂直于轴的直线方程为, 以为直径的圆交于两点,的中点为. , 所以,令,则对任意满足条件的, 都有(与无关), 即为定值.
关 键 词:
高中数学考前归纳总结圆锥曲线中的定值、定点问题
 剑锋文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:高中数学 考前归纳总结 圆锥曲线中的定值、定点问题
链接地址: //www.wenku365.com/p-43422367.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给剑锋文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

[email protected] 2017-2027 //www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开