• /  6
  • 下载费用: 11.9积分  

高中数学知识要点重温(21)排列组合及二项式定理知识点分析

'高中数学知识要点重温(21)排列组合及二项式定理知识点分析'
高中数学知识要点重温(21)排列组合及二项式定理1. 熟悉排列数、组合数的计算公式;了解排列数、组合数的一些性质:①,由此可得:,,为相应的数列求和创造了条件;②;③,由此得:;[举例] =___________解析:原式=;记,数列{}的前19项和即为所求。记数列{}的前项和为;该数列的求和办法有很多种,但都比较烦琐,这里介绍用组合数性质求解:注意到=,====…==1330;[巩固1]设且,则等于     。ā 。ˋ)   。˙)   。–)    。―) [巩固2] 已知的展开式中第9项、第10项、第11项的二项式系数成等差数列,则n=____2.解排列组合应用题首先要明确需要完成的事件是什么;其次要辨析完成该事件的过程:分类相加(每一类方法都能独立地完成这件事),分步相乘(每一步都不能完成事件,只有各个步骤都完成了,才能完成事件);较为复杂的事件往往既要分类,又要分步(每一类办法又都需分步实施);分类讨论是研究排列组合问题的重要思想方法之一,分类时要选定讨论对象、确保不重不漏。[举例] 设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中的最大数,则不同的选择方法共有:( )种A.50种 B.49种 C.48种 D.47种解析:本题要完成的事件是:构造集合I的两个非空子集;要求:B中最小的数大于A中的最大数;显然B中的最小数不可能是1,以下分类:① B中的最小数是2,B中可以有{2,3,4,5}中的1个元素、2个元素、3个元素或4个元素,所有可能的情况有:=8种,此时A只有{1}这1种;集合A、B都确定了,才算完成事件,∴完成事件有8×1=8中方法;② B中的最小数是3,B中可以有{3,4,5}中的1个元素、2个元素或3个元素,所有可能的情况有:=4种,此时A中可以有{1,2}中的有1个元素或2个元素,有=3种,∴完成事件有4×3=12种方法;③ B中的最小数是4,B中可以有{4,5}中的1个元素或2个元素,所有可能的情况有2种,此时A中可以有{1,2,3}中的有1个元素、2个元素或3个元素,有=7种,∴完成事件有2×7=14种方法;④ B中的最小数是5,只有{5}这1种,此时A中可以有{1,2,3,4}中的有1个元素、2个元素、3个元素或4个元素,有=15种,∴完成事件有1×15=15种方法;故完成事件的方法总数为:8+12+14+15=49,选B。[巩固]从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任选2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).3.对“按某种要求将个元素排到个位置”的问题,首先要确定研究的“抓手”:抓住元素还是抓住位置研究;再按特殊元素(特殊位置)优先的原则进行。[举例] 从5位同学中选派4位同学在星期四到星期日参加公益活动,每人一天,其中甲不能安排在星期六,乙不能安排在星期天,则不同的选派方法共有 种。解析:本题要完成的事件是:从5个不同的元素中选出4个元素,并按要求排在四个不同的位置。本题不宜抓住元素研究,因为每一个元素都不一定被选到,而每一个位置上都一定要有一个元素,故应该抓住位置研究。先看星期六(特殊位置,优先):不能安排甲,可以安排乙(特殊元素,优先)或除甲乙之外的一个同学,①安排乙:其它位置可任意安排,有种,②不安排乙:可以安排其他三位同学,星期日可以安排甲或另外两个同学,星期四、五可任意安排,有 种,故不同的选派方法共有:+=78种。[巩固]四个不同的小球全部放入编号为1、2、3、4的四个盒中。(1)恰有两个空盒的放法有 种;(2)甲球只能放入2号或3好盒,而乙球不能放入4号盒的不同放法有 种。4.解决排列组合问题还要遵循“先选后排”、“正难则反”(即去杂法)等原则;[举例]某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“”到“”共个号码.公司规定:凡卡号的后四位带有数字“”或“”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( )(福建文科第12题)A. B. C. D.解析:直接考虑带有数字“”或“”的情况太多,逐一讨论非常麻烦;考虑事件的反面:后四位不带有数字“”或“”的,有84个,故“优惠卡”的个数为104-84=。[巩固]四位同学乘坐一列有6节车厢的动车组,则他们至少有两人在同一节车厢的的情况共有 种?(用数字作答).5.熟悉几个排列组合问题的基本模型:①部分元素“相邻”(捆绑法),②部分元素“不相邻”(用要求“不相邻”的元素插空),③部分元素有顺序(个元素全排,其中个元素要求按给定顺序排列的方法数为=),④平均分组(个元素平均分成组的方法数为),⑤相同元素分组(用“挡板法”)等。[举例1]某校安排6个班到3个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种。解析:先将6个班分成3组,在将3个组分到3个工厂。6个班分成3组,从每组的人数看有3类:①4,1,1,有种;②3,2,1,有种,③2,2,2,有种;故不同的安排方法共有:(++)×=540种。[举例2]某文艺小分队到一个敬老院演出,原定6个节目,后应老人们的要求决定增加3个节目,但原来六个节目的顺序不变,且新增的3个既不在开头也不在结尾,则这台演出共有 种不同的演出顺序。解析:思路一:着眼于“位置”。从9个“位置”中选出6个,安排原来的6个节目,且第1和第9两个位置必须选,而他们的顺序是既定的,无需排列,所以有种方法,剩下的3个位置安排新增的3个节目,有种方法;故所有不同的演出顺序有:=210种。思路二:在原有6个节目的基础上“插空”。原来6个节目形成7个“空”,但前后两“空”不能安排,共有3类情况:①新增的3个节目互不相邻,有种方法;②新增的3个节目恰有两个相邻,有种方法;③新增的3个节目相邻,有5种方法,故所有不同的演出顺序有:++5=210种。[巩固1]记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( 。 (07高考北京理科第5题)A.1440种 B.960种 C.720种 D.480种[巩固2]学号为1,2,3,4的四名学生的考试成绩∈{89,90,91,92,93}(=1,2,3,4)且满足,则这四为同学考试成绩所有可能的情况有 种。[巩固3]现有10个市级“三好生”名额分配给高三八个班级,每班至少1个,则有 种不同的分配方案。6.“抽象化归”是解决排列组合问题的“太极拳”,“逐一列举”是解决排列组合问题的“撒手锏”;有时,画“树状图”能使“逐一列举”变得更加简明、直观。[举例1]已知两个实数集合A={a1,a2,…,a100},B={b1,b2, …,b50},若从A到B的映射f使得B中每个元素都有原象,且
关 键 词:
高中 数学知识 要点 重温 21 排列组合 二项式 定理 知识点 分析
 剑锋文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:高中数学知识要点重温(21)排列组合及二项式定理知识点分析
链接地址: //www.wenku365.com/p-43422544.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给剑锋文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

[email protected] 2017-2027 //www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开